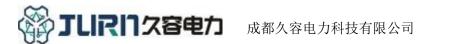


EQ-24/1EF 智能无功补偿控制器

使


用

说

明

书

成都久容电力科技有限公司

目录

	概述:		
二、	执行标准:	3	-
三、	型号说明	3	-
四、	使用环境:	. 3	-
五、	技术要求:	4	-
六、	验收实验	8	-
七、	安装说明:	8	-
八、	发货包装:	. 9	-
九、	环保及其他:	9	_

电话 028-83232058

一、概述:

智能无功补偿控制器以高速微处理器为控制核心,其功能强大、抗干扰能力强、运算速度快,产品质量可靠,通过控制补偿电容器投切,提高功率因数,提高电力变压器的利用效率,降低线损,改善电压质量。

二、执行标准:

DL/T 597-2017 《低压无功补偿控制器使用技术条件》

GB12325-90 《电能质量 供电电压允许偏差》

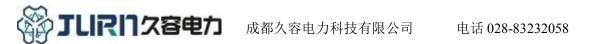
SD325 《电力系统电压和无功技术导则》

GB/T 14549-93 《电能质量 公用电网谐波》

GB/T 15543-1995 《电能质量 三相电压允许不平衡度》

GB 12326-2000 《电能质量电压允许波动和闪变》

GB11463-89 《电子测量仪器可靠性试验》


GB4208-93 《外壳防护等级的分类》

三、型号说明

四、使用环境:

- □ 环境温度: -40℃ ~ +70℃
- □ 相对温度: 25℃时小于90%

- 大气压力: 79.5kPa ~106.0kPa
- □ 海拔: 2000m

五、技术要求:

- 5.1 基本参数
 - □ 电源电压: AC220V±20%
 - 额定频率: 50Hz
 - □ 取样电压: AC220V
 - □ 取样电流: 0~5A
 - 控制输出: 12路输出 ≤ DC+12V 20mA
- 5.2功能说明:
- 5.2.1控制功能:

采用电压优先的电压无功控制方式, 当前电压低于投入电压时, 电容器依次投入; 电压 高于切除电压时, 电容器依次切除; 电压处于投入电压和切除电压之间时, 按无功功率投 切,功率因数低于投入门限,投入合适电容器组,功率因数高于切除门限,切除合适电容器 组,功率因数在投入门限和切除门限之间,不投切。

对同容量电容, 按无功容量决定投切, 按动作次数的多少选取电容实行均衡投切 对不同容量电容,按无功量大小自动选择匹配电容逐个投入和切除并兼顾动作次 数,不会出现投切振荡

对既有不同容量电容,又有等容量电容情况,可先按无功量大小自动选择匹配电容 容量,再根据动作次数对等容电容实行均衡投切。可以实现电容组合投切,以最少的电 容组数实现最佳的电容控制。例如三组电容可产生七种电容量。控制更精确,减少成套 装置的成本和空间

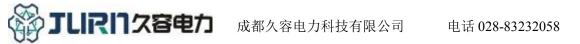
对电容容量比值关系无限制。可以按照任意指定次序对等容或不等容电容进行投切 可任意撤出停运的电容而不影响控制

5.2.2设置功能:

在【实时数据】页面长按 键 键 3秒钟,待设定指示灯点亮后,说明已经进入【参数列 表】页面,按△键和У键切换参数类型,在【参数列表】页面按У键进入【参数显示】 页面,按《键和》键改变当前参数值大小,按》键切换参数位光标.

参数列表如下:

代码	参数范围	参数含义	単位
PA-00 1-999 电流变		电流变比,例如200A:5A, 电流变比设置为40.	无单位
PA-01	0-12	共补补偿路数,实际接补偿开关回路数。	回路
PA-02	0-4	分补补偿路数,实际接补偿开关回路数。	回路
PA-03	0.85L- 0.85C 投入功率因数,电网无功功率大于未投入的电容器的,电网功率因数低于投入功率因数时,投入电容器。		无单位
PA-04	0. 85L- 0. 85C	切除功率因数,电网功率因数高于切除功率因数时,切除电容器。	无单位
PA-05	1-999	投入延时,投入每个回路的延时时间	秒
PA-06	1-999	切除延时,切除每个回路的延时时间	秒
PA-07	0-999	投入间隔,同一个回路两次投入的时间间隔,即 电容器的放电时间	秒
PA-08	0-999	过压报警门限,当电网电压高于此值时,控制器检测到过压报警,依次切除投入的电容器,并且闭锁限制输出,直至报警解除。	V
PA-09	0-999	欠压报警门限,当电网电压低于此值时,控制器 检测到欠压报警,依次切除投入的电容器,并且 闭锁限制输出,直至报警解除。	V
PA-10	0-99.9	电压谐波报警门限,当电网电压谐波高于此值 时,控制器检测到电压谐波越限报警,依次切除 投入的电容器,并且闭锁限制输出,直至报警解 除。	%


~~			
PA-11	0-99. 9	电流谐波报警门限,当电网电流谐波高于此值 时,控制器检测到电流谐波越限报警,依次切除 投入的电容器,并且闭锁限制输出,直至报警解 除。	%
PA-12	0-99	报警延时,控制器报警发生延时时间,如果故障在延时时间内恢复正常,则控制器不会检测到报警发生。	秒
PA-13	0-999	投入电压门限,当电网电压低于此值时,无论功率因数是否满足,都会依次投入电容器,直至电网电压处于投入电压门限和切除电压门限之间。	V
PA-14	0-999	切除电压门限,当电网电压高于此值时,无论功率因数是否满足,都会依次切除电容器,直至电网电压处于投入电压门限和切除电压门限之间。	V
C01-C12	0-999	第1-12回路电容器额定容量。	kvar
ID	0-247	通讯地址。通讯总线中该控制器的唯一地址	无单位
BPS	1-10	通讯速率。	BPS

5. 3操作说明:

5.3.1【实时数据】操作说明:

控制器显示屏由4位数码管组成,最左边一位表示数据类型,代表含义如下:

数据类型代码	数据类型	单位	备注
0	A相电压有效值	V	
1	B相电压有效值	V	
2	C相电压有效值	V	
3	A相电流有效值	A	
4	B相电流有效值	A	

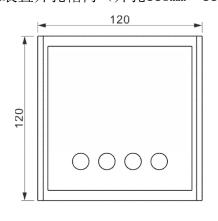
00			
5	C相电流有效值	A	
6	A相有功功率有效值	KW	
7	B相有功功率有效值	KW	
8	C相有功功率有效值	KW	
9	A相无功功率有效值	Kvar	
A	B相无功功率有效值	Kvar	
b	C相无功功率有效值	Kvar	
С	A相功率因数有效值		
d	B相功率因数有效值		
F	C相功率因数有效值		
Н	A相电压总谐波畸变率有效值	%	
Ј	B相电压总谐波畸变率有效值	%	
L	C相电压总谐波畸变率有效值	%	
N	A相电流总谐波畸变率有效值	%	
0	B相电流总谐波畸变率有效值	%	
Р	C相电流总谐波畸变率有效值	%	
E	报警代码		E-01: 过压报警 E-02: 欠压报警 E-03: 电压谐波报警 E-04: 电流谐波报警

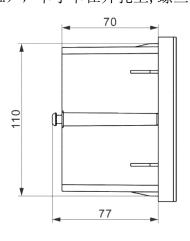
5.3.2【手动模式】操作说明:

进入手动模式需要如下所述操作:

在【实时数据】页面,长按 键3秒钟,自动指示灯熄灭,标识为1的指示灯点亮,说明当前已经进入手动调试模式;标识为1-12的指示灯在手动模式下指示1-12回路,按 键切换回路数,1-12回路指示灯随着切换点亮和熄灭。如果当前切换的回路为投入状态,投入指示灯点亮,切除状态时,投入指示灯熄灭。按 键投入和切除该回路。在手动模式下,按 键和 键切换实时数据显示类型;在自动模式时,指示灯1-12闪烁时,代表控制器准备投入该回路。

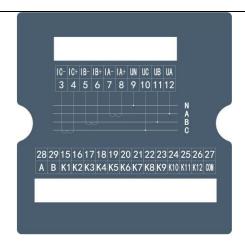
六、验收实验


验收实验用于验证装置在运输过程中未受到损失,确保要安装的装置是良好的。购买方负责试验。在有条件时,推荐进行下列项目的实验:


- 6.1 外观及结构检查。
- 6.2 介电强度试验(试验电压为例行试验规定值的85%)。
- 6.3 机械操作试验。
- 6.4 通电操作试验。

七、安装说明:

7.1 安装尺寸:


将控制器装入装置开孔糟内(开孔113mm×113mm),卡子卡在开孔上,螺丝拧紧。

后面板图:

7.2 接线说明:

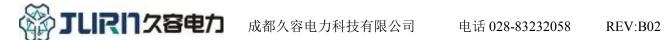
◆采样接法

12接A相电压; 11接B相电压; 10接C相电压; 9接电压零线;

- 8、7接A相电流(8为电流输入端);
- 6、5接B相电流(6为电流输入端);
- 4、3接C相电流(4为电流输入端)。

◆投切输出接法

15-26接1-12路控制信号, 每路输出直流电流≤20毫安, 27为公共端(DC+12V)


◆通讯接法

28-29接RS485通讯接口

八、发货包装:

- 8.1 所有控制器均需按照相关标准进行出厂检验。结构功能、符合要求时,方可进行包装和存放。
- 8.2 包装箱上有运输标志,装置包装在长距离运输过程中,采取防雨、防潮、 防震措施。
- 8.3 用户收到产品后,需检查各个包装的外观,确认无损伤,并且装箱单上所列全部内容无遗漏。
 - 8.4 若验货后还需转运或长期储存,需将包装箱恢复至原始状态。

九、环保及其他:

产品中使用的塑壳,金属等生物可降解材料,在生产、使用及废品处理等过程中不会对 环境产生污染,报废后须由资质的单位进行回收处理。